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Abstract. We study the full probability distribution of the charge transmitted through a mesoscopic diffu-
sive conductor during a measurement time ∆. We have considered a semi-classical model, with an exclusion
principle in a discretized single-particle phase-space. In the large ∆ limit, numerical simulations show a
universal probability distribution which agrees very well with the quantum mechanical prediction of Lee
et al. [Phys. Rev. B 51, 4079 (1995)] for the charge counting statistics. Special attention is given to its third
cumulant, including an analysis of finite size effects and of some experimental constraints for its accurate
measurement.

PACS. 72.70.+m Noise processes and phenomena – 73 Electronic structure and electrical properties
of surfaces, interfaces, thin films, and low-dimensional structures – 71.10.Fd Lattice fermion models

1 Introduction

The electrical current across a conductor results from a
flow of charge carriers. Their discreetness is responsible for
current fluctuations δi -called shot noise- characterized by
a noise power SI = 2

∫
δi(t)δi(O)dt proportional to the

mean current I. For example, a current I of uncorrelated
charges e will exhibit a full shot noise SI = 2.e.I. For
a recent review on shot noise and for general references,
see [1].

In diffusive conductors shorter than the electron-
phonon mean free path, an universal shot noise power
SI = (2.e.I)/3 has been predicted [2–9] and validated ex-
perimentally [10–13].

This 1/3 reduction over the full shot noise focused a lot
of attention because it had been derived in two different
frameworks: quantum mechanics (scattering matrix the-
ory [2–4] and Green function technique [5,6]) and semi-
classical mechanics (Boltzmann-Langevin approach in-
cluding Pauli’s exclusion principle [7–9]). While Landauer
saw a numerical coincidence between these results [14], de
Jong and Beenakker [15] minimized the role of phase co-
herence, which entails that an exclusion principle is the
only irreducible concept behind the two treatments.

To be more complete, we should also mention the stud-
ies of the shot noise reduction in non-degenerate diffusive
conductors: [16–18].
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The shot noise power can be seen as the statistical vari-
ance of the measurable current fluctuations. (By measur-
able current, we mean: current averaged over a timescale
much larger than the electron-electron correlation time,
which is always the case in electrical set-ups, even for very
highpass systems.) In addition to the variance, the shot
noise should also be characterized by all the higher mo-
ments of current fluctuations. In this paper, we will focus
on the information beyond shot noise power, in the per-
spective of testing the merits of classical versus quantum
mechanics in the noise reduction process.

The first significant result beyond the shot noise power
was derived by Levitov and Lesovik [19]. Starting from the
description of a charge-counting operator, they derived the
full statistics of transmitted charges through a point con-
tact, or in other words the probability that Q charges are
transmitted through a lumped scatterer during a given
measurement duration ∆ that is large compared to the
electronic correlation times. Note that in this large ∆
limit, Q/∆ becomes what we called a measurable current.
Two years later, Lee et al. [20] combined this result with
the bimodal distribution of the transmission eigenvalues
predicted by the random matrix theory for a phase co-
herent diffusive conductor [21]. In the large ∆ limit, they
obtained the statistics Pq(Q) for the transmitted charges
Q by this fully quantum derivation.

In this paper, we will show that the full statistics
of transmitted charge through a diffusive conductor is a
semi-classical quantity. To do so, we show that the pre-
diction of Lee et al. can be recovered in a semi-classical
model which takes into account for an exclusion principle



394 The European Physical Journal B

but not phase coherence. This result generalizes to dif-
fusive conductors an earlier derivation for double-barrier
junctions [23].

2 The model

A minimal modeling of an out-of-equilibrium semi-
classical mesoscopic conductor consists of a 1D open sys-
tem with a flow and a back-flow of charges of opposite
velocities. This degenerate model can be easily adapted to
a one dimensional chain: each site being associated with
a back-scattering probability and a Pauli exclusion rule.
Such degenerate systems are often considered in the theo-
retical physics literature as “simple exclusion process” or
traffic models. Indeed some of the analytical results on
shot noise power mentioned previously have been derived
with such models [8,22]. In order to strictly overlap with
these previous studies, we stick with the exact sequence
of dynamic rules considered by Liu et al. [22].

The model consists of a chain of N sites. Each site is ei-
ther empty, occupied by a right or a left-moving charge or
by two charges propagating in opposite directions. Dur-
ing each time step, all charges are shifted to the next
site, according to their direction. After this, each charge
is likely to back-scatter with probability r, provided that
the resulting state is empty. The system is maintained out
of equilibrium by dissymmetrical boundary conditions:
charges are injected at each time step at one end of the
chain while both ends act as perfect absorbers for charges
coming from the chain.

For the model parameters considered in this paper,
over 108 samples are sometimes required for the statistics
to converge up to the desired accuracy. In practice, the
numerical simulation could still be performed on a desk-
top computer thanks to a code which core is restricted to
low level-processor-instructions. Basically, each configura-
tion of the chain occupation can be coded by the binary
representation of two integers, one for each charge direc-
tion. Each time step is a combination of a register shift
(right or left), a bit increment to account for the charge
injection at the boundary, and a bit-to-bit comparison of
the two integers to check for the scattering which are com-
patible with the Pauli exclusion principle. The efficiency
of scattering is set by precomputed series of random bits,
refreshed when necessary. A special attention was dedi-
cated to the validation of the random numbers algorithm.
In addition to this direct simulation, two semi-analytical
methods provided a cross validation of the results up to
N = 6 sites. For longer chains, those methods were either
too CPU-time or memory consuming.

3 Results

The dots in Figure 1 present the probability distribu-
tion of the transmitted charges Q∆ for typical parame-
ters of the semi-classical model (measurement duration:
∆ = 18000 time units [24], site’s back-scattering prob-
ability: r = 50%). For comparison, the distribution Qq
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Fig. 1. Left scale: probability distribution from the number of
transmitted charges during ∆ = 18000 time units. Each site
presents a r = 50% back-scattering probability, which results
in a G = 〈Q∆〉/∆ = 9% conductivity. Dots: present semi-
classical model. Thin line: Lee et al.’s quantum model for the
same average transmission [20]. Right scale: difference between
each distribution and their Gaussian fit. Open circles: present
model, thick line: Lee et al. model.

predicted by Lee et al. quantum model is plotted for the
same average transmission (thin line) [20].

The central limit theorem states that both these distri-
butions converge to a Gaussian distribution when∆→∞.
In this large ∆ limit and within finite size corrections, it
has been demonstrated that the distributions variances
of both models – i.e. the shot noise power – become
equal [8,20]. More precisely, in the large ∆ limit, de Jong
and Beenakker showed that when the number of sites N
increases, the Fano factor 〈(Q∆−〈Q∆〉)2〉/〈Q∆〉 converges
to 〈(Qq − 〈Qq〉)2〉/〈Qq〉 = 1/3.

Beyond the Gaussian approximation, the non-
Gaussian contribution of both distributions is also plot-
ted in Figure 1 (right scale). The central finding of this
work is the excellent agreement between the semi-classical
(open circles) and the quantum models (thick line) which
strongly suggests that a semi-classical picture fully ac-
counts for the whole statistics of transmitted charges in a
diffusive conductor.

4 Finite size effects: the signature
of correlations

The rest of this paper focuses on the finite size effects as-
sociated with the three parameters of the model: the chain
length or number of sites N , the measurement duration ∆
and the back-scattering probability r on each site.

The third cumulant 〈(Q∆ − 〈Q∆〉)3〉 provides a useful
measure of the deviation from the Gaussian distribution
and it can be directly compared to the quantum model
prediction 〈(Qq − 〈Qq〉)3〉 = 1/15〈Qq〉 [20]. In this last
equation, the linear scaling with 〈Qq〉 is simply a conse-
quence of the fact that for large measurement duration
(∆ = ∞ in this model), 〈Qq〉 is the sum of almost un-
correlated random variables which effective number scales
linearly with ∆. One of the motivation for considering
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Fig. 2. Dependence of the third Fano factor F3 = 〈(Q∆ −
〈Q∆〉)3〉/〈Q∆〉 with the measurement duration ∆ for the
present model (solid lines) and for the same model without
exclusion principle (dashed line). For all curves the back-
scattering probability is r = 85%. The number of sites per
chain is ♦: 2, triangles: 4, circles: 7. The transient regime evi-
dences an anti-correlation time between the charge arrivals.

cumulants is precisely that they behave linearly with re-
spect to the addition of independent variables. Therefore,
the physics of the short timescale electron correlations is
captured by the numerical prefactor 1/15. In the follow-
ing, it will be useful to call the ratio of the third cumulant
by the average transmission the third Fano factor F3, in
reference to the usual Fano factor F .

Figure 2 presents the semiclassical third Fano factor
F3 = 〈(Q∆−〈Q∆〉)3〉/〈Q∆〉 versus the measurement dura-
tion ∆ for different combinations of N and r (solid lines).
After a transient regime, the signal settles to a constant
level. The transient regime duration defines a correlation
time τ . Beyond this regime, for ∆� τ , the random vari-
able Q∆ scales like ∆/τ as expected and the third Fano
factor converges to a constant value. Note that the mea-
surement duration ∆ = 18000 used in Figure 1 – to com-
pareQ∆ and Qq – is validated by a plot similar to Figure 2
for r = 50%.

The simulations show that τ increases when the chain
length is increased as one would expect for a similar model
without exclusion principle. In this latter case, we shall
show that τ is of the order of the scattering time through
the chain. Let us compare further the model with and
without exclusion principle. In Figure 2, F3 versus ∆ is
plotted for this second model for the same back-scattering
probability and chain lengths (dashed lines). The transient
regimes are significantly larger in this second model. In the
∆ = 0 limit, F3 = 1 as expected from a Poisson distribu-
tion while for large ∆, F3 converges to (1 − G)(1 − 2G)
where G = 〈Q∆〉/∆ is the conductivity. More extensive
calculations confirmed this large ∆ limit, which corre-
spond to a binomial distribution.

This result can be understood with the basic sketch of
Figure 3. To begin with, the main feature of the model in
the absence of exclusion principle is that electrons emitted
at different times are completely uncorrelated. The prob-
ability distribution of the transmitted charge is therefore
completely determined by the probability distribution for
a single particle to leave the system on the right, as a
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Fig. 3. A simple way to analyze the model in the absence
of exclusion principle. Electrons emitted at different times are
uncorrelated. They have a finite probability to contribute to
the signal if their typical arrival time (lying in the tilted band
of slope unity and width τ ) lies in the measurement window
(the horizontal band of width ∆). Left large ∆ limit (∆� τ ).
Right: small ∆ limit (∆� τ ). The picture shows two different
measurement windows separated by an interval shorter than τ ,
which leads to strong anticorrelations between the two signals.

function of the time spent inside it. Let us denote by τ
the width of this distribution. We emphasize that τ is not
the individual elastic scattering time of the particles. In
the non interacting case, and in the diffusive regime, τ is
proportional to the square of the length of the chain. The
left picture in Figure 3 illustrates what happens as ∆� τ .
Most detected particles have been emitted in region 2. For
them, the measurement window covers the whole span of
likely values for their lifetime in the system, before leav-
ing on the right. Region 1 corresponds to particles emitted
early, so they have to spend more time than average in the
system in order to contribute to the signal. Symmetrically,
region 3 corresponds to particles spending a shorter time
than average in the system. Regions 1 and 3 have a width
of order τ , whereas region 2 lasts for a time equivalent to∆
as ∆� τ . All the particles emitted in region 2 contribute
independently to the signal with the same probability P∞,
so the measured charge follows a binomial distribution:

P(Q∆) ' ∆!
Q∆!(∆−Q∆)!

(P∞)Q∆ .(1− P∞)∆−Q∆ .

The right picture in Figure 3 represents the opposite
situation, when ∆ � τ . First, we expect anticorrelations
between charges measured in the time intervals [t, t +∆]
and [t′, t′ + ∆] if ∆ <| t − t′ |� τ , simply because both
measurements involve particles which have been emitted
in a same time interval of width proportional to τ , and
the same particle cannot be detected twice. As ∆ � τ ,
the probability for each particle to contribute to the sig-
nal becomes very small, so we get a Poisson distribution.
The crossover from this Poisson distribution to the bino-
mial one occurs for ∆ ∼ τ , and is precisely due to the
correlations between the small time intervals [t, t+∆] and
[t′, t′ + ∆] when ∆ <| t − t′ |� τ . The main asset of
this overly simple model is to illustrate the role of the
correlation time τ . It also emphasizes the need to give
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Fig. 4. Dependence of the Fano F (upper set of curves) and
third Fano factors F3 (lower set of curves) versus the conduc-
tivity G = 〈Q∆〉/∆. The symbols ���H • © are the data for
N = 1, 2, 3, 6, 10, 28 sites; The dotted lines through those
symbols are guides for the eyes and are obtained by interpo-
lation. The thin solid lines are the dependences for a lumped
(or point) scatterer predicted by the coherent scattering for-
malism: (1−G) and (1−G)(1− 2G). As expected, we recover
the N = 1 case. The two plateaux at F = 1/3 and F3 = 1/15
are predicted by Lee et al.’s quantum derivation for a diffusive
conductor. We find that the data approach those plateaux as
N increases.

an accurate modelling of the injection process. The bino-
mial law for ∆� τ is strongly connected to the fact that
the particles are injected periodically in the system. If the
injection process is instead taken to follow a Poisson dis-
tribution, the scale τ doesn’t appear and the transmitted
charge obeys a Poisson distribution, for all values of ∆.
These two features (role of τ and importance of the in-
jection mechanism) are of course expected to be found
in more complex and more realistic models, such as the
model simulated here, although full analytical treatments
are not easily available. Let us now return to the case with
the exclusion principle.

Figure 4 presents the Fano factor F and the third Fano
F3 factor versus the conductance G = 〈Q∆〉/∆ for vari-
ous numbers of sites N . This plot completes a similar one
published in [22] for the Fano factor. The continuous lines
are the factors F = (1 − G) and F3 = (1 − G)(1 − 2G)
for a point scatterer predicted by the coherent scattering
formalism [20]. The agreement with the data in the G→ 1
limit can be understood easily: for Nr < 1, the mean free
path becomes longer than the chain and the whole sys-
tem can be considered as a lumped (or point) scatterer.
In contrast, in the low conductivity limit, each charge
undergoes many collisions in the chain and a diffusive-
like behavior is expected. It is known that as the chain
length increases, the data for the Fano factor converge to
a plateau at 1/3 [8,20]. Figure 4 shows that the same type
of asymptotic plateau emerges for the third Fano factor
data. A plateau at F3 = 1/15, plotted in Figure 4, is com-
patible with the data.

Another point of view on these data supports the con-
jecture of an asymptotic plateau at 1/15. Figure 5 presents
the third Fano factor F3 versus the number of sites N for
various back-scattering probabilities r. The residual dis-
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Fig. 5. Dependence of the third Fano F3 factors with the
number of sites N . The plateau at F3 = 1/15 is predicted
by Lee et al. Inset : F3 − 1/15 versus N for r = 80% up to
N = 28.

crepancy between the 1/15 limit and the N = 10 data
appears as a finite size effect on N . The inset shows the
difference between the third Fano factor and 1/15 as a
function of the number of sites N for r = 80%. It is in-
teresting to note that the convergence is compatible with
a power law with a (−1) exponent, which may be related
to long range correlations between charge carriers induced
by the exclusion principle.

5 Perspective for experiments

To our knowledge, experiments on the statistics of the
transmitted charge have never been extended beyond the
shot noise power. This may not be surprising since such ex-
periments are difficult for a fundamental reason: the physi-
cal phenomena revealed by higher cumulants are related to
the correlation time scale τ while the experimental probes
(ammeter, . . .) always have a time constant ∆ such that
∆� τ . As we mentioned earlier, in this limit the statistics
of transmitted charges are very close to a Gaussian and
a large number n of statistical samples are required to
discern the non-Gaussian contributions, such as the third
Fano factor F3. In the following, we show that under spe-
cific experimental conditions, these contributions remain
measurable. The following considerations, which are de-
rived in the eV > kT regime, can be easily generalized to
the eV < kT regime where F3 = 1/3 is expected [26].

We first consider the experimental analog of the cumu-
lants 〈(Q∆ − 〈Q∆〉)2〉 and 〈(Q∆ − 〈Q∆〉)3〉 from which F
and F3 are derived. A central point is the relation between
the number of transmitted charges Q∆ and the currents i
measured by the ammeter; our analysis differs from a pre-
vious one on this point [25]. The dynamical response of
the ammeter is characterized by a cut-off frequency fB or
the corresponding time scale ∆ = 1/fB which can be seen
as the duration of the charge counting from which each
current output is inferred. Consequently, the relation be-
tween Q∆ and each current output i should be:

Q∆ ∼ ∆i ∼ i/fB.
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At this point, two comments are necessary. Firstly, fB
should be understood as the effective frequency at the am-
meter output, which is set by the whole set-up, including
filters, cables, ... Secondly, in practice, the measurement
chain is rarely a low pass but rather a bandpass, in order
to filter out the low frequency noise or as a consequence
of the typical specifications of RF elements. In the follow-
ing, fB should be understood as the measurement band-
width rather than the cut-off frequency. Note that we are
implicitly assuming that the shot noise is white, which
is reasonable for the experimental conditions considered
below.

Using the previous equation, the Fano factors F and
F3 can be written as:

(i− i)3 = F3i(efB)2

where the overline denotes the average over the bandwidth
fB. The experimental uncertainty on F3 is mostly due to
the uncertainty on (i− i)3, which results itself from unde-
sirable current noises iN in the circuit (such as amplifier
noise and thermal noises) and from the finiteness of the
number of statistical samples n. Assuming that i and iN
are independent and quasi-Gaussian, the resulting signal
to noise S/N of (i− i)3 and F3 is indeed:

S/N = (i− i)3/
√

var((i+ iN )3)

= (i− i)3/

√
6((i− i)2 + i2N )3/n

where we used the relation between the variance var of the
statistical estimate of the third cumulant of a Gaussian
and its second cumulant. To a reasonable approximation
for our purpose, (i− i)2 is the sum of the shot noise 2Fei
and the thermal noise 4kT/R across the conductor of re-
sistance R:

(i− i)2 ∼ (2Fei+ 4kT/R)fB/2.

If SN is the noise power density of iN , we also have:

i2N = SNfB/2.

The four last equations can be combined to give n as a
function of the other parameters including S/N and i. If
the ammeter output is sampled at a rate fs (oversampling
being excluded) and if we set S/N = 10, the duration T
of the experiment will be:

T =
n

fs
∼ 75

(2Fei+ 4kT/R+ SN)3

fsfBi
2
e4F 2

3

·

For fB = fs = 1 GHz, SN = 10−24 A2/Hz, T = 4 K,
R = 50 Ω and i = 10 − 1000 µA, we find an experiment
duration T < 1 min, comfortable for an experimentalist.

The typical RF frequencies that we find for fB has
consequences on the procedure for processing the amme-
ter output [27]. A calibrated analogic device can certainly

perform the i→ i3 function but even if a fully analog sig-
nal processing is feasible [28], we believe that a numerical
acquisition is preferable here. Given the typical param-
eters fs and T , real time storing of all the data is not
possible with present technologies but a histogram of the
measured current is enough for a post-processing of the
cumulants and real time histograms can be acquired at
frequencies up to several GHz. This signal processing pro-
cedure would also allow to extract more information than
just F3. In particular, Figure 1 shows that the deviation
from the Gaussian has a ∼∼ shape which is nearly or-
thogonal to the Gaussian and not efficiently sensed by the
i → i3 projection function of the third cumulant. Since
this ∼∼ function is known theoretically, it could be used
as a projection vector for the experimental histograms. It
is clear that such a processing would significantly increases
the S/N ratio.

6 Concluding remarks

The main result of this work is the perfect quantitative
agreement between the classical model (with an exclusion
principle in phase space) and the full quantum treatment
of reference [20] for the complete probability distribution
of transmitted charge through a 1D diffusive conductor,
during a measurement time ∆. Such an equivalence has
already been discussed by many researchers in the last
decade, either at the level of the second moment of this
distribution (the noise power) [7–9] or for the special case
of a double-barrier system [23]. However, our impression is
that a first principle understanding of why this should be
true is still lacking. Indeed, an advantage of the direct nu-
merical simulation we have performed is to yield the com-
plete stationary out of equilibrium probability distribution
on the configuration space of our system, which is the ana-
logue of the Sinai-Ruelle-Bowen measure for continuous
dynamical systems [29]. This information goes in principle
far beyond the one contained in the Boltzmann stationary
distribution or even the more refined Boltzmann-Langevin
approach to the fluctuations in the single particle distri-
bution around its stationary value. The latter formalism
has proved very efficient for the computation of noise re-
duction factors in various models [7–9]. But it relies on
a key assumption on the fluctuations of the density cur-
rent in single particle phase-space, namely it is a Poisso-
nian random process with local correlations in space and
time. Although this is a very reasonable assumption, as
argued in [30], a rigorous derivation of this behavior re-
quires in principle the exact knowledge of two particle cor-
relations from the stationary distribution in configuration
space. This goes far beyond the knowledge of the Boltz-
mann distribution. A natural question arising from the
present work is to compare these two particle correlations
obtained in the numerical simulation with the assumption
made in [30]. We hope to get a clear answer on this impor-
tant point in the near future. In fact, the strong similarity
between our model and the simple exclusion process con-
sidered in [31] suggests that the stationary distribution
in configuration space is a very complex object. Recently,
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Derrida et al. have uncovered some fascinating proper-
ties of the rare large fluctuations of such distributions,
which exhibit a strongly non-local character [32]. It would
be very interesting to analyze the stationary distributions
obtained here along those lines, although it may be im-
possible to derive exacts analytical expressions as in the
simple exclusion model.

Finally, it would be very useful to generalize the
Boltzmann-Langevin approach of [7–9] to the computation
of the complete distribution of the transmitted charge. At
this point, we may object that a full quantum-mechanical
derivation is already available [20]. However, this deriva-
tion involves a quenched averaging over the possible im-
purity configurations. For a given mesoscopic sample, this
may be justified by an ergodic hypothesis, so that averag-
ing the transmission matrix over a finite energy window
eV becomes equivalent to impurity averaging. But this
may break down for very small systems. Furthermore,
semi-classical models are very flexible, since they have
been extended to treat interaction effects and inelastic
processes [16,17,33,34]. Again, we believe a detailed anal-
ysis of the stationary distribution in configuration space
is required to make further progress.

We want to thank O. Verzelen, T. Jolicoeur, G. Bastard and
R. Ferreira for sharing their computing resources. We are
also grateful to N. Regnault for some programmer tricks, to
H. Willaime and P. Tabeling for technical support with the
preliminary experiment mentioned in [27] and to H. Bouchiat,
S. Guéron and B. Reulet for their feed-back.
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